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Distributed Dynamic Programming 

Ahstruct -We  consider distributed algorithms for  salting dynamic pro- 
gramming problems whereby several processors participate simultaneously 
in the computation while maintaining coordination by information ea- 
change via communication links. A model of asynchronous distributed 
computation is developed which requires very weak assumptions on the 
ordering of computations, the timing of information exchange.  the amount 
of local information needed at each computation node. and the initial 
conditions  for  the algorithm. The  class of problems considered is very 
broad  and includes shortest path problems. and finite and infinite horizon 
stochastic optimal control problems. When specialized to a shortest path 
problem the algorithm reduces to the algorithm originall) implemented for 
routing of messages in the ARPANET. 

R ECENT  advances in microcomputer technology  have 
intensified  interest in distributed  computation 

schemes.  Aside  from modular  expandability.  other  poten- 
tial advantages of such  schemes are  a  reduction in compu- 
tation time for solving a given problem  due to parallelism 
of computation.  and elimination of the need to communi- 
cate  problem data available at geographically  dispersed 
data collection points to a  computation  center.  The first 
advantage is of crucial  importance in real-time applications 
where  problem solution time can be an implementation 
bottleneck.  The second advantage manifests  itself for ex- 
ample in applications involving communication networks 
where there is a  natural  decentralization of problem data 
acquisition. 
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The  structure of dynamic  programming  naturally  lends 
itself  well to  distributed  computation since it involves 
calculations  that to a great extent  can be camed  out in 
parallel. In fact it is trikial to devise simple  schemes taking 
advantage of this structure whereby the  calculation  in- 
volved  in  each iteration of the standard form of the algo- 
rithm is  simply  shared  by several processors. Such  schemes 
require a  certain degree of synchronization in that  all 
processors  must complete their assigned portion of the 
computation before a new iteration can begin. As a result 
complex protocols for algorithm  initiation  and processor 
synchronization may be necessary, and the speed of com- 
putation is limited to  that of the slowest processor. These 
drawbacks motivate distributed  algorithms whereby  com- 
putation  is  performed asynchronously at various  nodes 
and  independently of the progress in other nodes. Their 
potential  advantages  are simpler implementation,  faster 
convergence to  a  solution  and, possibly, a  reduction  in 
information exchange  between computation nodes. 

This  paper considers an asynchronous  distributed algo- 
rithm for a  broad class of dynamic  programming  problems. 
This class is  described in Section 11. The  distributed com- 
putation model  is  described  in  Section 111. It is shown in 
Section IV that  the algorithm  converges to  the correct 
solution  under very  weak assumptions.  For  some classes of 
problems convergence  in finite time  is demonstrated.  These 
include shortest path  problems  for which the  distributed 
algorithm of this  paper  turns  out  to be essentially the  same 
as  the  routing  algorithm originally implemented in the 
ARPANET in 1969 [ 11. To  our knowledge there is no 
published  proof of convergence of this  algorithm. 
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11. PROBLEM FORMULATION 

We  use an abstract  framework of dynamic  program- 
ming, first introduced  in [2], [3]  which includes as special 
cases a  number of specific problems of practical  interest. 

Let S and C be  two  sets referred to as the state space and 
the control space, respectively. Elements of S and C are 
referred to  as states and controls and are  denoted by x and 
u ,  respectively. For each x E  S we are given a subset 
U( x )  C C referred to as the control constraint set at x .  Let F 
be  the set of all extended real-valued functions J :  S - .  
[ - 00,00] on S .  For any two  functions J , ,  J2€ F we use the 
notation 

J , G J ,  i f J , ( x ) G J 2 ( x ) ,  V x E S ,  ( 1 4  

J l = J 2  i f J , ( x ) = J , ( x ) ,   V X E S .  ( lb)  

Let H :  S X C X   F +  [-00,00] be a  mapping which is 
monotone in the sense that  for all x E  S and u E  U ( x )  we 
have 

H ( x , u , J , ) G H ( x , u , J , ) ,  VJ,, J,EF withJ,GJ2.  

Given  a subset F C F the  problem is to  find  a  function 
J* E F such that 

J * ( x ) =  inf H ( x , u ,  J*) ,  VxES. (3) 
u € L'( x)  

By considering the  mapping T F + F defined by 

T( J ) ( x )  = inf H ( x ,  u ,  J )  
KE L'( X )  

the  problem is alternately  stated as one of finding  a fixed 
point of T within F, i.e., a  function J* E F such  that 

J* = T( J*). ( 5 )  

We will assume throughout that T has  a unique fixed  point 
within F. 

We provide some examples that  illustrate  the  broad 
scope of the problem formulation  just given. 

Example 1 (Shortest Path  Problems): Let ("X,?.) be a 
directed  graph where % = { 1,2,. . - .n} denotes  the set of 
nodes  and ? denotes  the set of links. Let N ( i )  denote  the 
downstream neighbors of node i, i.e., the set of nodesj for 
which (i, j )  is a link. Assume that each link ( i ,  j )  is 
assigned a positive scalar a,, referred to as its  length. 
Assume also that there is a  directed  path  to  node 1 from 
every other  node.  Then  it  is  known (see [4, p. 671) that  the 
shortest path distances d: to  node 1 from all other nodes i 
solve uniquely the  equations 

If we make the  identifications 

S = C = % ,   U ( x ) = N ( x ) ,  

F= F ,  J * ( x )  = d: (7) 

we find that the  abstract  problem (3) reduces to  the  shor- 
test path problem. 

Example 2 (Infinite Horizon  Stochastic  Optimal  Control 
Problems): Let H be given  by 

H(x,u,J)=E{g(x,u,w)+aJ[f(x,u,w)]Ix,u} (9 )  

where we assume  the following: 
1) The  parameter w takes values in  a  countable  set W 

with given probability  distribution p(  dw I x ,  u )  depending 
on x and u, and E { .  Jx, u }  denotes expected value with 
respect to this distribution. 

2) The  functions g and f map S X C X W into [ - 00, 001 
and S,  respectively. 

3) The scalar a is positive. 
Because the set W is assumed  countable  the expected 

value in (9) is well defined for all JE F in terms of infinite 
summation  provided we  use the  convention + 00 - 00 = 
+ 00 (see  [3,  p. 31 I). It is possible to consider a  more 
general probabilistic  structure  for W (see [3]) at the ex- 
pense of complicating the  presentation but this does not 
seem worthwhile in view  of the  computational  purposes of 
the  paper. 

It is shown in [3] that with this definition of H the 
abstract  problem (3) reduces under  more specific assump- 
tions to various types of standard  stochastic  optimal  con- 
trol problems. Thus if g is uniformly bounded above and 
below  by some  scalars  and 0 < a < 1 the  problem is equiva- 
lent  to  the  standard  infinite  horizon  discounted  stochastic 
optimal  control  problem with bounded cost per  stage (see 
15, sect. 6.1-6.31). Under these circumstances the  mapping 
T of (4) has  a  unique fixed point J* in the class of all 
bounded real-valued functions  on S and J* is  the  optimal 
value function of the  corresponding  stochastic  optimal 
control problem. 

If we assume that 0 < g( x, u ,  w) or g( x ,   u ,  w )  G 0 for all 
( x ,  u, w )  E S X C X W, then we obtain  stochastic  optimal 
control problems of the type discussed extensively, for 
example, in [5 ,  sect.  6.4-6.6,  7.1-7.41, and [3, ch. 51. If J* is 
the  optimal value function  for such a  problem, then J* is 
the  unique fixed point of T over all functions J E  F such 
that 0 < J <  J* if 0 =G g ( x ,   u ,   w )  for all (x, u,  w ) ,  or J* < J 
GO if g ( x ,  u ,  w)GO for all ( x ,  u,w) ( see  [5 ,  p.  2561). 

Example 3 (Finite  Horizon  Stochastic  Optimal  Control 
Problems): Let S ,  C ,  U(x), W, p (  dw \ x ,  u) ,  g and f be as in 
Example 2 and consider the set of equations 

JI,(x,) = 0,  x,€ s ( 1 0 4  

where N is a positive integer. These are  the usual dynamic 
programming  equations associated with finite  horizon  sto- 

Authorized licensed use limited to: MIT Libraries. Downloaded on May 04,2010 at 22:59:29 UTC from IEEE Xplore.  Restrictions apply. 



www.manaraa.com

612 

chastic  optimal  control  problems with  zero terminal cost 
and  stationary cost per stage and system function.  It is 
possible to write these equations in the form (3) by defin- 
ing  a new state  space consisting of an ( N  + 1)-fold Carte- 
sian  product of S with itself, writing J* = (J,. J,: . . , J , v ) .  
and  appropriately defining H on the basis of (10). In fact 
this is a  standard  procedure for converting a  finite horizon 
problem to an  infinite horizon problem (see [5. p. 3251). 
This  reformulation can also be trivially generalized to finite 
horizon problems involving a  nonzero terminal cost and  a 
nonstationary system and cost per stage. 

111. A MODEL FOR DISTRIBUTED DYNAMIC 
PROGRA"ING 

Our algorithm can  be described in terms of a collection 
of n computation  centers referred to as nodes and  denoted 
1,2; . - , n .  The  state  space S is partitioned into n disjoint 
sets  denoted SI,. . . S,,. Each node i is assigned the re- 
sponsibility of computing  the values of the solution func- 
tion J* at  all  states x in the  corresponding set Si. A nodej  
is said to  be a neighbor of node i if j # i and there exist a 
state x, E S, and two functions J , .  J,E F such that 

J , ( X )  = J , ( x ) .  Vx e sj (1 la) 

T ( J , ) ( X , ) + T ( J 2 ) ( X J ) .  (1 lb) 

The set of all neighbors of i is denoted N(i). Intuitivelyj is 
not  a neighbor  of i if, for every J E  F, the values of J on S, 
do not influence the values of T ( J )  on S,. As a result, for 
any JE F, in order for node i to  be  able  to  compute T( J) 
on SI it is  only  necessary to know the values of J on  the  sets 
5 , j E  N ( i ) ,  and, possibly. on the set S,. 

At each  time instant,  node i can be in one of three 
possible states- compute,  transmit, or idle. In the compute 
state node i computes  a new estimate of the values of the 
solution  function J* for all states x€ S,. In the transmit 
state node i communicates  the  estimate  obtained from the 
latest  compute  phase to one or more  nodes m for which 
i E N(rn) .  In the idle state  node i does  nothing related to 
the solution of the  problem. Each node i also has  one 
buffer per neighborjE N(i) denoted B,, where it stores  the 
latest transmission fromj, as well as  a buffer Bi, where it 
stores  its own estimate of values of the  solution  function J* 
for all states x €  S I .  It is assumed that  a  node  can receive a 
transmission  from  neighbors  simultaneously  with comput- 
ing or transmitting. 

We assume that  computation  and transmission for each 
node takes place in uninterrupted time intervals [ t , .  t,] 
with t ,  < t 2 ,  but do not exclude the possibility that  a node 
may  be  simultaneously transmitting to more than  one node 
nor  do we assume that  the transmission invervals to these 
nodes have the same origin and/or termination. We also 
make no assumptions  on  the  length, timing. and sequenc- 
ing of computation  and transmission invervals other  than 
the following. 
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Assumption 1: There exists a positive scalar P such that, 
for every node i, every  time interval of length P contains at 
least  one  computation inverval for i and  at least one 
transmission interval from i to  each  node m with i E N( m). 

The  contents of each buffer B,, wherej = i o r j E  N ( i )  at 
time t are denoted 4;. Thus J,: is, for every t ,  a  function 
from s, into [ - 30. rn J and may  be llewed  as the estimate 
by node i of the restriction of the  solution  function J* on 5 
available at time r .  The rules according to which the 
functions J,: are  updated  are  as follows: 

1) If [ t , .  t 2 ]  is a transmission interval for nodej  to  node 
i with i E  A'( j ) .  the  contents 4;' of the buffer B . at time t ,  
are  transmitted  and entered in the buffer Bj j  at time t , ,  i.e., J! 

J I . 2  = (12) 

2) If [ t , .  t l ]  is a  computation  interval for node i ,  the 
contents of buffer BJi at time t2 are replaced  by the 
restriction of the function T( 4'1) on SI where, for all t .  4' is 
defined by 

1 J , : ( x ) :  if X E S , ,  

J , ' (x )  = J , ) ( x ) .  if x €  S, and jE  N ( i ) ,  (13) 
0. otherwise. 

In other  words we  have 

J , : ' ( X ) = T ( ~ ~ I ) ( ~ ) =  inf H ( x , u , J , ~ I ) $  VXES,. 
UEL'(*) 

(14) 

3) The  contents of a buffer B,, can  change  only at the 
end of a  computation  interval  for  node i. The  contents of a 
buffer B,,. j E  N ( i ) .  can  change only at  the  end of a 
transmission interval from j to i. 

Note  that by definition of the neighbor set N(i), the 
value T(J,I)( x) for x E SI does not  depend on the values of 
J,' at states x €  S,,, with m f i. and m N(i). We  have 
assigned arbitrarily  the  default value  zero to these states in 
(1 3). Our objective is to show that for all i = 1 , .  . . , n 

lim A;(.) = J*(x). V~ES,. j = i  or j~ N ( i ) .  

It is clear that  an assumption such as  Assumption  1 is 
necessary in order for such  a result to hold. Since iteration 
( 14) is of the  dynamic  programming  type it is also clear 
that some restrictions must  be  placed on  the  mapping H 
that  guarantee convergence of the algorithm under  the 
usual  circumstances  where the  algorithm is carried  out  in  a 
centralized synchronous  manner (i.e..  when there is only 
one  computation  node). The following assumption places 
somewhat indirect  restrictions  on H but simplifies the 
convergence analysis. 

Assumption 2: There exist two  functions J and f in F 
such that  the set of all functions J E  F with JG .f 
belongs to F and  furthermore 

r - x  

J > T ( J ) ,  T ( J ) > J  (15) 
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lim Tk(  6)( x) = J*( x), VxE S (16a) 

lim T k ( J ) ( x ) = J * ( x ) ,  VxES (16b) 

where T k  denotes  composition of the  mapping T with  itself 
k times. 

x. -X  

k - X  

Note  that in view  of the  monotonicity of H [cf. (2)] and 
the fact J* = T( J*), Assumption  2 implies 

- 
J > ~ ( J ) ~ T ~ ( ~ ) ~ . . . 2 J * > .  

> T * ( J ) H - ( J ) 2 J .  

Furthermore if J E  F satisfies J G J d 7 then 

lim T ' ( J ) ( x )  = J*(x) for all x~ S .  

Assumption 2 leaves open  the  question of how to find 
suitable  functions J and J. On the  other  hand for most 
problems of interest the choices are clear. In particular we 
have the following: 

1) For shortest  path  problems  (Example 1) it is 
straightforward to verify that  the choices 

k - x  

J ( i ) = O ,  V ' i = l ; . . , n  (1 7 4  

satisfy Assumption 2. 
2) For  finite horizon stochastic  optimal  control  prob- 

lems  (Example 3) for which the function g in (10) is 
uniformly bounded below it  can  be easily verified that  the 
functions J= ( A ,  &; . -&) and J = (Lo, JI.. . .,J,,,) where 
for all k and x 

J J x ) = O o ,  Jk(X)' -Oo (18) 
- 

satisfy  Assumption 2. 
3) For discounted  infinite horizon stochastic  optimal 

control  problems  with  bounded cost per stage  (Example 2 
with a €  (0.1) and g uniformly bounded above and below) 
it is easily shown that every pair of functions A J of the 
f o m  

J ( x ) = P ,  J ( x ) = P ,  - V x E S  

where 

1 
- sup inf E { g ( x , u , w ) ) G j 7 < c o  
- a X E S  U E L ' ( . Y )  

1 
-x</3<- inf  inf E {  g( x, u ,  w)} 

- 1 - a  X € 5  U € L ' ( . Y )  

satisfy Assumption 2. 
4) For  infinite horizon stochastic  optimal  control  prob- 

lems with  nonpositive cost per  stage  (Example  2 with 
g G 0) it  can  be  shown  that  the  functions J,  J with 

J ( x ) = J * ( x ) ,  - J ( x ) = O ,  V x E S  

satisfy Assumption  2 ( [ 5 ,  pp. 261, 2981). If the cost per 
stage is nonnegative  (Example  2 with g 2 0), then,  under  a 

mild assumption (which is satisfied in particular if U ( x )  is 
a  finite set for each x),  it  can be  shown that  the choices 
A J with 

J ( x ) = O .  J ( x ) = J * ( x ) ,  V X E S  

satisfy Assumption  2 ( [ 5 ,  pp. 263,  2981). The choice of J 
and 7 can be  further  sharpened and simplified under  more 
specific assumptions on problem structure  but we  will not 
pursue  this  matter  further. 

Our convergence result will be shown under the assump- 
tion that  the  contents 4," of the buffers B j j  at the  initial 
time t = 0 satisfy 

J(x)"-J;q(x)"-J(X), VxES,. (19) 

The broad  range of initial  conditions allowed  by ( 19) 
eliminates  the need to reset the  contents of the  buffers in 
an environment where it is necessary to execute  periodi- 
cally the  algorithm with slightly different  problem data  as 
for example in routing  algorithms for communication  net- 
works. This is particularly  true for cases 1)-3) above where 
condition (19) implies that  the  initial  buffer  contents can 
be essentially arbitrary. 

IV. COWERGENCE ANALYSIS 

Our main result is the following proposition. 
Proposition I: Let Assumptions 1 and  2  hold  and as- 

sume  that  for all i = 1,- . .,n 

lim J , ) ( x ) = J * ( x ) ,  V~ES,: j=i or j E N ( i ) .  

Proof: Since the contents of a buffer can  change only 
at the end of a  computation or transmission inverval at a 
node we can analyze  convergence in terms of a  discrete 
time process. We focus  attention  at  the sequence of times 
{ t k }  with O < t , < t , < - .  where  each tk  is the  end of a 
computation  interval for one or more nodes. 

I-co 

Let us consider for all t 2 0 

4: S,-[-x,Oo], 4;: sf-[-cjc,OoO]: 
where for each x €  3, the value c ( x ) [ J ; ( x ) ]  represents 
the  contents of buffer B,j at time t if the algorithm were 
executed  with the same  timing and  order of computation 
and transmission intervals but with initial  condition 
J ( x ) [ J ( x ) ]  instead of J, ,"(x)  for each buffer B f j  and x E Sf. 
The monotonicity  assumption  (2)  and  the  definition of the 
algorithm [cf. (13), (14)] clearly imply that  for all t 

- 

-'J J ~ ( X ) G J ; ; ( ~ ) G ~ ( X ) $  VXES,. i=l: .- ,n,  

j = i  or j~ Iv(i). (21) 

It will thus suffice to show that 
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l imJ,>(x)=J*(x),  VXES,, i = l ; . - , n , j E N ( i )  

(22) 

l imjT:(x)=J*(x),  VXES,, i = l : . . , n , j E N ( i ) .  
r-cz: 

(23) 

r - s  

In view of the fact J2 T( J )  we  have clearly 

J ( x ) = J ~ ( x ) 2 J i : l ( x ) ,  VXES, ,   i= l ; . . ,n ,  j ~ ~ ( i )  

(24) 
with potential  strict  inequality  only  for nodesj for which t ,  
was the  end of a  computation  interval.  For r E  [ t , ,  t z )  the 
content of B,J is either zy or 4: so from (24) we  must  have 

G ( x )  <;'(x), VXE s,. i = 1; . * , n ,  

j~ ~ ( i ) ,  rE [ t , .  r , )  
j r : l ( x )> jS : ( x ) ,  VXES,, i = l ; . . , n ,  

j € N ( i ) ,  t € [ t , . t , ) .  (25)  

The last relation can also be  written as 

< ~ ( x ) > ~ m ( x ) .  VXES,, j = l ; . - . n .  

r n E N ( j ) ,  t E [ t , , t 2 ) .  (26) 

In view  of the monotonicity  of H it follows from (26) and 
(14) that 

J , : l (x )>J , : z (x ) ,  VxES, 
- 

(27) 

with potential  strict inequality only for nodesj for which t ,  
was the end of a computation interval. Combining (25) and 
(27) we obtain 

j;:(x)aJJ:2(~), VXES,. i = l ; . . , n .  j E N ( i )  

with potential  strict inequality only for nodes j for which 
either t ,  or t ,  was the  end of a  computation  interval.  The 
preceding argument  can  be repeated to show that for all 
k, i = 1;. .,n, a n d j E  N(i) we have 

- 
~ ( X ) 2 J , : ( ? C ) B J I : ' ( X ) > ~ ~ * ' ( X ) ,  

VXE $$ rE [ t k ,  t k - , ) .  (28) 

Let k ,  be the first integer for whch  2P  G r k t  where P is 
as in Assumption 1. Then each node must  have  completed 
at least one  computation phase in the interval [0, P ]  and  at 
least one transmission  phase to all nodes in the interval 
[ P,2P].  It is  easily  seen that  this together with  (28). the 
monotonicity of H .  and the definition of the algorithm 
implies that for all t E  [ t k , .  t k , + , )  

T(J)(X>>$(X)>J/ : l l (X),  VxES,, 
- 

j = l , . .  . , n .  j~ N ( i ) .  

This  argument  can be repeated  and shows that if rn(k )  is 
the largest integer rn such  that 2mPG r k  then for all 
tE [ t , ,  [ , + I )  

T ~ Z ( " ( J ) ( x )  2 <(x) 2 G(x), V x E  3, 
i = l ; . . , n , j E N ( i ) .  (29) 

Similarly we obtain for all t E  [ t k ,  t , , , )  

-JJ J ' I ( x ) > J J x ) > T m ( X - ) ( J ) ( x ) .  VxES,, 

i = l . .  . . . n ,  j €  N ( i ) .  (30) 

By combining (21). (29), and (30) and using Assumption  2 
we obtain (22) and (23), and the proof of the proposition is 
complete.  Q.E.D. 

An alternative proof of Proposition 1 may be  found  in 
[SI. Note  that (21). (29). and (30) provide useful estimates 
of rate of convergence. In fact by  using these relations  it is 
possible to show that in some special cases convergence is 
attained in finite time. 

Proposition 2: In the cases of Examples 1 and 3 with the 
choices of given  by (17) and  (1 8). respectively and 4: 
satisfying (20). there exists a time i> 0 such that for all 
i= l ; . . , nandr> i the reho lds  

J , : ( x ) = ~ * ( x ) ,   V x E S J , j = i   o r j E N ( r ) .  

Proof: For Example 3 it is easily  seen that  there  holds 

T " ( J ) ( x ) = T k ( J ) ( x ) = J * ( x ) .  VxES. k>.hT+l. 

The proof follows from  (21),  (29), and (30). For Example 1 
i t  is easily seen that 

T ' ( ( J ) ( ~ )  = J*(i), vi= 2;. . ,n, k 2 n .  

Also for each i, T'( J)(i) represents  the  length of a path 
starting from i with k links. and each link has positive 
length.  Therefore there exists a ksuch that T'( J ) ( i )  repre- 
sents length of a  path  from i to  node 1. for otherwise the 
paths  corresponding to T k (  .I)( i) would  cycle indefinitely 
without reaching node 1 and we would  have T x (  J ) ( i )  + co. 
Since T x ( J ) ( i )  G J * ( i )  and J*(i) is the  shortest  distance 
from i to 1 we obtain 

- 
T ' ( J ) ( i ) = J * ( x ) .   V i r 2  . . . e .  n ,  k a k .  

The result again  follows  from (21). (29), and (30). Q.E.D. 
It is possible to construct examples  showing that in the 

case of the shortest  path  problem  the  number of iterations 
needed for finite convergence of T ' ( J )  depends  on  the 
link lengths in a  manner whch makes the overall algorithm 
nonpolynomial. 

In many problems of interest  the  main objective of the 
algorithm is to  obtain  a minimizing control law I*. i.e., a 
function p*: S --* C with p*(x)E U ( x )  for all x €  S such 
that 

H [ x . p * ( x ) ,  J * ]  = min H ( x ,  u ,  J * ) ,  VxES. 
U E L ' ( . X )  

(31) 
It is thus of interest to investigate the  question of whether 
control laws pf: S + C satisfying 

p ' ( x ) E U ( x ) ,  V x E S  (32) 
and 
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VxES,, i= l ; . . , n  (33) 

where J! is  given for all t by (13), converge in some sense to 
a control law p* satisfying (31). The following proposition 
shows that convergence is attained in finite time if the sets 
U ( x )  are finite and H has  a  continuity  property which is 
satisfied for most problems of practical interest. A related 
convergence result can be shown assuming the sets U ( x )  
are compact (cf. ISl Proposition 5.1 11). 

Proposition 3: Let the assumptions of Proposition 1 
hold. Assume also  that  for every x €  S,  u E  U ( x )  and 
sequence { J k }  C F for which lim, - J k (  x) = J*( x) for all 
x E S we have 

lim ~ ( x ,  u, J ~ )  = H ( x ,  u ,  J*). (34) 

Then for each state x€ S for which U ( x )  is a finite set 
there exists i, > 0 such that  for all f 3 f, if $(x) satisfies 
(32), (33) then 

k - %  

Proof: Assume the contrary, i.e., that there exists a 
state x €  S, for which U(x) is finite, and an increasing 
sequence { t k }  with tk -+ x such that 

Vk=1,2;.  

(35) 

and 

=J*(x), V'k=1,2;--. (36) 

Since U ( x )  is finite, there exists a iiE U ( x )  such that 
p ' ~ (  x) = U for  an  infinite subset of indexes K. From Pro- 
position 1 we have that J ' k  converges pointwise to J* on 
the set S,U,, lv(I)s/ .  Using the definition of the neighbor set 
N ( i ) ,  (34) and (36), it follows that 

lim H ( X , ~ ~ , J ' ~ ) = N ( X , ~ : J * ) > J * ( ~ ) .  
k - X  

On the other  hand from (35) and Proposition 1 we have 

lim H (  x, U, J , I I )  = J*(  x) 
k - X  
k E K  

which contradicts  the previous relation. Q . E . D .  

v. DISCUSSION AND CONCLUSIONS 

The analysis of this paper shows that  natural  distributed 
dynamic programming schemes converge to the correct 
solution under very  weak assumptions on  the problem 
structure,  and  the timing and  ordering of computation  and 

internode communication. The restrictions on the initial 
conditions  are also very  weak. This means that,  for  prob- 
lems  that  are being solved continuously in real time, it  is 
not necessary to reset the  initial  conditions  and resynchro- 
nize the algorithm each time the problem data changes. As 
a result the  potential  for tracking slow variations in opti- 
mal control laws is improved, and algorithmic implementa- 
tion is greatly simplified. 

The crucial assumption in the analysis of this paper  is 
the monotonicity property of the mapping H [cf. ( 2 ) ] .  
Indeed this property is largely responsible for most of the 
basic results in dynamic programming (see [3]). On  the 
other  hand  the  mapping H of many dynamic programming 
models possesses a  contraction  property which is sufficient 
to guarantee the validity of the  distributed algorithm of 
this paper even in the absence of the monotonicity assump- 
tion (2). To be more specific let F be the set of all 
uniformly bounded real valued functions on S equipped 
with the  sup-norm 

IIJII = sup I J ( x ) ( ,  V J E F .  (37) 
x €  s 

Assume that, in place of the monotonicity  assumption (2), 
H has  the following properties: 

T( J )  E F, VJE F (38) 

llT(J)-T(J')ll ~ p l I J - J ' l l ,  VJ,  J ' E F  (39) 

where p is a scalar with 0 < p < 1. Then T has a  unique 
fixed point J* in F and it is possible to show that  the 
conclusion of Proposition 1  holds provided Assumption 1 
is in effect and  the initial buffer contents J,: are uniformly 
bounded  functions  on  the corresponding sets 3. It is not 
necessary to assume Assumption 2 for this result. The 
proof is  very similar to the  one of Proposition 1 and 
utilizes the  contraction  assumption (39) to show that  the 
sequences 

sup  sup { lJ)(x)- J * ( x ) ( }  
i .  j x E S, 

decrease monotonically to zero as t - co. Note  that since 
the value of H need not  depend  on u, this result shows the 
validity of our algorithm applied to  an arbitrary fixed 
point problem of the form J = T( J )  for which the  mapping 
T F-, Fsatisfies (38) and (39). The result just stated  can 
also be proved by applying a general convergence theorem 
for  distributed fixed point algorithms given in [8]. 

The use of the sup-norm (37) is essential for  the validity 
of the result described above. Indeed for  the  important 
class of Markovian decision problems involving a finite 
state space and minimization of average cost per stage (see 
Howard [6]), a  distributed  asynchronous version of the 
usual dynamic programming algorithm due  to White [7] 
(see [5, sect. 8.21) may fail to converge to  the correct 
solution. This is illustrated in the following example con- 
structed by J. Tsitsiklis. In this example the basic  mapping 
H does not satisfy the monotonicity assumption (2). and 
the corresponding mapping Tis  not  a  contraction mapping 
with respect to  the  sup-norm (37). It is a  contraction 
mapping with respect to  a different norm. 
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Example (J. Tsitsiklis): Let the  state  space consist of 
two  states S = (0, I}, and the control space consist of a 
single control C = (0). Consider the  Markov  chain with 
state space S for whch  at each stage if the state is 0 a cost 
go is incurred  and  a  transition to  state 1 occurs  with 
probability p o E  (0,l). If the state is 1  a cost g,  is incurred 
and  a  transition to  state 1 occurs  with probabilityp, E (0.1). 
Consider  the  mapping T R' -, R' defined  by 

~ ~ J ~ ~ ~ ~ = ~ o + P o ~ J ~ ~ ~ - J ~ ~ ~ I  

Because there is only one  control available at each stage 
the  definition of T does not  involve a minimization as in 
(4). It is clear however that T arises  from  a  mapping H of 
the form considered in this paper except that t h s  mapping 
does not satisfy the monotonicity condition (2). 

Now  by applying  a well-known result (e.g., [5.  p. 3451) 
we  have that T has  a  unique fixed point J* = (J*(O),   J*( 1)). 
and J*(O) is the average  gain of the process. Furthermore, 
the  standard  dynamic  programming algorithm  which con- 
sists of the successive generation of T( J ) ,  T'( J). . . . , start- 
ing from an  arbitrary  initial JE R' converges to J*. Indeed 
T is an affine  mapping involving the matrix 

[ 3 :  3 
It can  be easily  seen that  the eigenvalues of this matrix lie 
strictly within the  unit circle and  as  a result T i s  a  contrac- 
tion  mapping with respect to  some  norm on R2. However. 
T is not  a  contraction  mapping with respect to the sup- 
norm. 

Now consider  the  distributed algorithm  of  Section 111 
with  two computation nodes 0 and 1 corresponding to the 
two states.  Consider  a sequence of events whereby node 0 
does many iterations before transmitting at time t ,  the final 
value J'l(0) to node 1, while  in the meantime node 1 is idle. 
Then node 1 does  many  iterations before transmitting at 
time r 2  the final value J'2(1) while node 0 is idle. and  the 
process  is repeated. If Jo ( l )  is the  estimate of J*( 1) availa- 
ble at nodes 0 and 1 at time 0, we have  using (40) and (41) 

By eliminating J ' l (0)  in the  relations above, we obtain 

1 PI POP1 
J'?(  1) 2 - 

1 -  PI 
Jo(l). 

Thus the estimate of J*(1) is updated  approximately 
according to the equation 

and  it follows that, if p ,  is sufficiently close to unity, then 
J( 1 )  will oscillate between positive and negative numbers of 
increasingly large magnitude. This shows that  the  natural 
distributed version of the  dynamic  programming  algorithm 
for average cost Markovian decision problems is not 
guaranteed to converge to the  correct  solution when the 
sequencing of computation  and  internode  communication 
is arbitrary. 
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